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ABSTRACT: The prevalence of autism spectrum dis-
orders (ASD) and the number of identified ASD-related
genes have increased in recent years. The SETD5 gene enco-
des a SET-containing-domain 5 protein, a likely reader
enzyme. Genetic evidences suggest that SETD5 malfunction
contributes to ASD phenotype, such as on intellectual dis-
ability (ID) and facial dysmorphism. In this review, we
mapped the clinical phenotypes of individuals carrying
mutations on the SETD5 gene that are associated with ASD
and other chromatinopathies (mutation in epigenetic modi-
fiers that leads to the development of neurodevelopmental
disorders such as ASD). After a detailed systematic litera-
ture review and analysis of public disease-related databank,
we found so far 42 individuals carrying mutations on the
SETDS gene, with 23.8% presenting autistic-like features.
Furthermore, most of mutations occurred between positions
9,480,000-9,500,000 bp on chromosome 3 (3p25.3) at the

SETDS5 gene locus. In all males, mutations in SETDS5 pre-
sented high penetrance, while in females the clinical pheno-
type seems more variable with two reported cases showing
normal female carriers and not presenting ASD or any ID-
like symptoms. At the molecular level, SETDS interacts
with proteins of PAF1C and N-CoR complexes, leading to a
possible involvement with chromatin modification pathway,
which plays important roles for brain development.
Together, we propose that mutations on the SETD5 gene
could lead to a new syndromic condition in males, which is
linked to 3p25 syndrome, and can leads to ASD-related
intellectual disability and facial dysmorphism. © 2018 Wiley
Periodicals, Inc. Develop Neurobiol 78: 500-518, 2018
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INTRODUCTION

Autism spectrum disorders (ASD) constitute a wide
variety of childhood-onset neurodevelopmental con-
ditions, affecting nearly 1% of the human population
(Gilman et al., 2011). The pathogenic mechanisms of
ASD remains unknown, and no disease-modifying
treatments are available. Based on ASD highly vari-
able genetic architecture, autism can be classified as
either syndromic or non-syndromic. Syndromic types
of autisms are usually monogenetic and might arise
in conjunction with other disease phenotypes (Sztain-
berg & Zoghbi, 2016), such as Fragile X Syndrome
(FXS), Rett Syndrome (RTT), Prader-Willis Syn-
drome, Angelman Syndrome and Timothy Syndrome
(Geschwind & Levitt, 2007). Non-syndromic autism,
also known as “idiopathic autism” or “classical
autism”, is a complex genetic disorder involving
many genes that are likely to contribute to the etiol-
ogy of autism (Sztainberg & Zoghbi, 2016). The vast
majority of described ASD cases are non-syndromic
and lack a defined genetic etiology and syndromic
autism correspond approximately 10%—-20% (Schiff
et al, 2011). Over the years, novel evidences
emerged for specific genes and conditions that could
be defined as novel syndromic types of autism. Here
we show that the SET-containing-domain 5 (SETDS)
gene emerged as a candidate gene that could be asso-
ciated as novel syndromic type of autism, with high
penetrance in males. Rare de novo loss of function
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(LoF) mutations in this gene accounts for approxi-
mately 0.7% of intellectual disability (ID) cases and
is associated with ASD phenotype. The SETDS5 gene
acts as an epigenetic modifier factor and is widely
related to ID (Kuechler et al., 2015). To identify all
the previously described genetic variants linking the
SETDS5 gene with neurological disorders, we per-
formed a detailed Systematic Literature Review
(SLR) over different reference disease-related data-
bases of biology, genetics, health, medical and life
sciences to perform a deep literature content analysis
and redundancy exclusion (Fig. 1). We show that
individuals carrying SETDS5 mutations share clinical
ID features, including similar ASD phenotypes.
SETDS5 mutations have high penetrance in males, but
not in females that can be differentially affected. Fur-
thermore, analysis of SETDS metabolic pathways
suggest that this gene is involved in chromatin modi-
fications, and alterations on this pathway as in other
chromatinopathies-related genes can lead to tran-
scriptome instability as the cause of neurodevelop-
ment disorders.

SETD5 CLINICAL FEATURES

ASD are characterized by several clinical symptoms,
including impairment of social interaction, communi-
cation delays, stereotyped behaviors and difficult
with eye contact. Together, all these symptoms are

Records duplicates excluded
(n=10)

Records excluded
(n=4)

Full-text articles excluded
(n=3)

Figure 1 Representative flowchart describing the systematic literature review for genetic variants
covering SETDS5 gene. Among 32 published papers citing SETD5, only 17 studies reported muta-

tions in SETDS5 gene.
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Figure 2 Representation of 3p25 locus on autistic individuals. The locus 3p25 has, in different
individuals, CNV alterations involving the genes SETDS5, SETDS5-AS1 (THUMPD3-ASI) and
THUMPD?3 (red rectangle). SETDS5 gene was in all detected CNVs, the gene SETDS was always
involved. Adapted from Kuechler et al., 2015. [Color figure can be viewed at wileyonlinelibrary.

com]|

associated to the development of ID and are shared
by individuals with both syndromic and non-
syndromic types of autism.

Our SLR lead to the confirmation that individuals
with mutations on SETDS5 share similar phenotypes
with individuals with two other conditions: the 3p25
microdeletion syndrome and autosomal dominant
mental retardation-23 disease (Stur et al., 2017).
Recently, mutations on SETD5 were described to
overlap phenotypic features with Cornelia de Lange
syndrome (CdLS; Parenti et al., 2017). The first
description associating SETD5 with ID was described
within the critical chromosome region 3p25, with
three genes (SETDS, LOC440944, and THUMPD3;
Fig. 2) associated to be responsible for the condition
development (Kellogg et al., 2013). Grozeva et al.
(2014) was the first to show a phenotypic resemblance
between individuals with 3p25 deletion and mutations
in SETDS5 gene, sufficient to cause ID. Recently, 14
individuals with SETDS5 mutation were described
demonstrating the variable features in phenotypes,
such as facial dysmorphism (Powis et al., 2017).

In total, we found 17 articles (Fig. 1) with SETDS
gene mutations that were described in the literature. In
all the reviewed cases, patients showed ID and facial
dysmorphism, implicating these clinical features as
potential phenotypes associated with SETDS5 muta-
tions (Table 1). As the possible consequence of ID,
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71.4% of individuals experienced motor impairment/
delay and 69.0% suffered from speech impairment/
delay during childhood development. Furthermore,
23.8% of the individuals presented autistic-like fea-
tures (Tables 1 and 2). Seizures, another notable clini-
cal feature, was present in 23.8% of individuals.

Despite of only 23.8% of the individuals affected
by SETD5 mutations show signs of autism, and con-
sidering mutations on this gene is rare, some reports
does not describe whether the studied individual has
ASD. Regardless of this fact, SETDS is a relatively
new gene, and the first time described showing phe-
notypes was in 2014 (Pinto et al., 2014). ASD-related
disorders present a wide percentage of individuals
with ASD phenotype, such as in Rett syndrome
(female individuals: 61%), tuberous sclerosis com-
plex (36%), Angelman’s syndrome (34%), Williams’
syndrome (12%), Down’s syndrome (16%), 22q11.2
deletion syndrome (11%; Richards et al., 2015) and
Fragile X (male individuals: 46%; female individu-
als: 16%; Center for Disease and Control Prevention,
2017).

GENETIC VARIANTS OF SETD5

SETDS is a protein coding gene, covering a region of
82kb length at the 3p25.3 locus. In our SLR, we
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Table 2 Analysis of Clinical features related to SETD5
mutations

Totals Percent
Reference n = 42% Affected
Gender Male = 66.7%, Female = 30.9%,
**Not available = 2.4%
Autistic Features 10/42 23.8%
Intellectual Disability 39/42 92.8%
Speech Impairment/ 29/42 69.0%
Delay
Motor Impairment/ 30/42 71.4%
Delay
Epilepsy/Seizures 10/42 23.8%
Congenital Heart 16/42 38.0%
Defects
Facial Dysmorphism 40/42 95.2%
Hand Stereotypies/ 9/42 21.4%
Ritualized Behavior
Impaired Vision 8/42 19.0%
Muscle Hypotonia 18/42 42.8%
Polydactyly 12/42 28.6%

*Number of individuals with mutation described on SETDS so far.
**When gender are not described.

identified three types of genetic variations on SETD5
gene in individuals with ASD: single nucleotide vari-
ant (SNV; Fig. 3), duplication and deletion (Table 3).
Most of SETD5 SNVs were described by a single
study that screened approximately one thousand

SETDS5 Mutations Underlying Autistic Conditions 507
individuals diagnosed with moderate to severe ID
(Grozeva et al., 2015). It was found that 11% of indi-
viduals carry rare and probable pathogenic mutations
in known or candidate ID-associated genes and not
restricted to only to the SETDS gene, and ~8% of
these same individuals also had pathogenic rare SNV
mutation with probable loss of function (LoF).
Among the LoF SNVs in SETDS5, four correspond to
nonsenses variants as follows (all genomic coordi-
nates are based on human reference genome, build
Hg19): NM_001080517:c.1195A>T (p.Lys399%),
NM_001080517:¢c.1333C >T (p.Argd45%), NM_00
1080517:¢.1866C > G (p.Tyr622*) and NM_0010
80517:¢.3001C > T (p.Arg1001%*). The mutation c¢.30
01C >T, was also reported in a male with ten years
old with developmental disability and dysmorphic
features (Powis et al., 2017). In the same study, in
patients with developmental delay, behavioral/psy-
chiatric issues, it was found the following likely LoF
SETDS de novo variants in SETD5: NM_001
080517:¢.1655_1656insA, NM_001080517:c.1783-
2A>T, NM_001080517:c.582dupA  (p.Alal95-
Serfs*), NM_001080517:¢.1967delT (p.Leu656*) and
NM_001080517:¢.3246delT  (p.Alal083Leufs*61).
Among the LoF deletions and duplication, it was also
found the following three corresponding frameshift-
inducing  variants: deletion NM_001080517:c.
2177_2178del (p.Thr726Asnfs*39), deletion NM_00
1080517:¢.3856del (p.Ser1286Leufs*84), duplication

Scale 20 kb} { hg19
chra: | 9,450,000/ 9,460,000| 9,470,000| 9,480,000| 9,490,000| 500,000] 9,510,000/ I
SETD5 1> 3 3 > 5 e L e Rt e | |
e 1 5 0 0 0 PRSI i I 1 | I
SETDS b rrtip-| b »-p
SETDS® pp- > 1
SETD! BP0 > 1 ;
SETDS k>fm) |||
SHTDS > ‘,“l, PR 33 rrrrfrror ¥ m.i»j.‘i:
RefSeq Genes k i+ Hi : t H—Hth t 1 +H I
—— €.2918C>G |
C.. > 1
€.2347-7A>G ~ C.2955T>A -
€.547_567+60del — ¢.3001C>T
i~ €.2177_2178del
c.582dupA L ¢230205T €.3212A>G |
€.894A>G Wi c.3246delT |
[ = .3266_3267delCT -|
Legend: €.1125dupA - I c.1967delT e el
egend: ¢1195A5T — | |L ¢.1993delC : g
Exon 13330>T & sl
: c1381_1388del - | | STE2A GalRaowL
— Intron TR €.1655_1656insA €.3848_3849insC
€.2212_2213delAT c.3856del -
> Direction of transcription ¢.3949delA

Figure 3 Locus of SETDS5 gene indicating the genetic variants identified by a systematic literature
review. All variants where listed within exonic and intronic regions of SETD5 gene locus (chromo-
some 3, positions 9,439,403-9,519,838 on human reference genome, build GRCH37), with
80,436 bp length. [Color figure can be viewed at wileyonlinelibrary.com]
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NM_001080517:¢.3771dup (p-Ser1258Glufs*65;
Grozeva et al., 2014, 2015) and deletion NM_0010
80517:c.1381_1388del (p.Asn461fs; Green et al,
2017). All reported variants were heterozygous within
analyzed male individual genomes, suggesting a dom-
inant inheritance pattern of SETD5 genetic variants
(Grozeva et al., 2014, 2015). Another LoF de novo
variant (NM_001080517:c.1125dup; Popp et al.,
2017), was found in a patient with hypotonia and mild
intellectual disability. This duplication change the
CTG reference allele by CTTG and results in a frame-
shift (p.Val376Cysfs*9).

Analysis of the mutations described as LoF in
SETDS individuals revealed that 50% had a deletion
and another 50% had a nonsense or frameshift varia-
tion. Furthermore, direct correlations between LoF
SNVs on SETDS5 and ASD features were not found.
The prevalence of ASD in children is around 1:68
with 62% in males (Source: CDC — Center for Dis-
ease Control and Prevention, 2017). We found in this
review a similar gender ratio of 66.7% of males,
30.9% of females and only 2.4% was not available
when considering all individuals carrying deleterious
SETDS mutations (Table 2). A description of individ-
uvals carrying these SETDS5 mutations and their corre-
sponding phenotypes revealed ID as the prominent
clinical feature among other conditions (Supporting
Information Table S1).

An investigative study was performed in individuals
with developmental delay/ID (Kuechler et al., 2015).
Using a whole exome sequencing approach, two indi-
viduals with de novo SNVs on SETD5 gene were found.
The first individual, a 9-year-old female, contained a
NM_001080517:¢.2302C >T (p.Arg768%) nonsense
SNV mutation; the second individual, a 20-year-old
female contained a NM_001080517:¢.523A > G (p.Ser
175Gly) nonsense SNV variant and, in addition to intel-
lectual disability he also had mild attention deficit disor-
der (Kuechler et al., 2015).

In another case, it was reported a male individual
with several clinical conditions, such as epilepsy,
developmental delay, cognitive impairment, with a
West Syndrome diagnosis. After genetic analysis, a
de novo insertion of a 6-bp (TTATAG) sequence
within intron 16 of the SETDS5 gene was found
(Kobayashi et al., 2016). The insertion NM_00108
0517:¢.2347-7TA> G resulted in a premature stop
codon within the transcript coding sequence
(p-Arg783Leufs*2). The reported mutation expanded
the phenotypic spectrum of mutations previously
found in the SETDS gene, allowing the inclusion of
the early-onset epileptic encephalopathies (EOEEs)
as a novel condition associated with SETD5 muta-
tions (Kobayashi et al., 2016). This same insertion
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was found as a de novo event in other three patients:
two males and one female (Powis et al., 2017). In the
first male patient, with 3 years old, the variant was
associated with developmental delay and dysmorphic
features. The second male patient, with 20 years old,
had ASD, ADHD (Attention-deficit/hyperactivity dis-
order), epilepsy and low IQ (57). The female patient
did not show signs of developmental delay neither
behavioral/psychiatric issues but presented dysmor-
phic features.

More recently, different SETDS5 mutations in a 36-
year-old male whose phenotypic features included
only mild motor and intellectual disability was
described (Stur et al., 2017). This phenotype was
associated with a novel frameshift event caused by a
single nucleotide insertion (NG_034132:c.3848_
3849insC) within SETDS5 gene coding region, that
resulted in the replacement of the amino acid Serine
by the Leucine (p.Ser1286Leu), and inducing a pre-
mature stop codon at position 1322 of the gene. It is
hypothesized by the authors that the truncated protein
leads to a partial protein activity that contributed
with the mild phenotype of the individual. A clinical
and molecular characterization study involving seven
individuals with overlapping features with CdLS
(Parenti et al., 2017), a genetically heterogeneous dis-
ease that causes growth retardation and intellectual
disability (Schrier et al., 2011), revealed that none of
them presented disease-causing mutations in CdLS-
related genes. The only pathogenic mutation found
was in a 7-year-old male child carrying a dinucleo-
tide deletion (AT; NM_001080517:c.2212_2213de-
IAT) on the SETDS gene locus, that induced a
premature stop codon after 27 translated amino acids
(p-Met738Valfs*27; Parenti et al., 2017). The child
presented clinical features that included mild delayed
development and intellectual disability.

In another study, whole genome sequencing of two
brothers and the biological father allowed the identifi-
cation of two mutations in the SETDS5 gene. The older
brother presented a more severe phenotype related
with delayed motor development, speech and ID. The
younger brother was severely affected with ID and
the father had mild intellectual impairment. All three
have in the SETD5 gene a potential nonsense LoF
mutation NM_001080517:¢.2918C > G (p.Ser973%).
It was found a nonsense SNV mutation NM_0010
80517:¢.3212A > G that causes a substitution of a
tyrosine by a cysteine aminoacid at position 1,071 of
the encoded protein (p.Tyr1071Cys; Szczaluba et al.,
2016).

Other two cases of inherited SETDS alterations
were analyzed (Powis et al., 2017). In a male patient,
with global developmental delay, hypotonia, mild



spastic diplegia, dysarthria, and anxiety, received
from his unaffected mother, the frameshift variant
NM_001080517:¢.1655_1656insA. The other case of
inherited alteration, it was found a stop gained variant
(NM_001080517:¢.2955T > A (p.Tyr985%*)) in dizy-
gotic male twins with a mildly affected mother. Both
twins have cognitive delay, ritualized behaviors,
obsessive compulsive disorder and dysmorphic fea-
tures. In both families, the passed SETD5 mutation
from their corresponding mothers presented high
penetrance level in males as observed in other
reported male individuals. Furthermore, a normal car-
rier, the mother suggests that in females, mutations
on this gene might have low penetrance. And finally,
the nonsynonymous mutation NM_001080517:c.
894G > A (Russo et al., 2017), was found in a male
with ASD, ADHD, language and cognitive delay, ste-
reotypic behavior and sleep disturbance.

Complementary to this SLR, we also investigated
the public databank of clinical variants, ClinVar
(Landrum et al., 2014), to check for SETD5 genetic
variants with any clinical significance. After analysis
and data selection, we found 16 genetic variants classi-
fied as pathogenic or probably pathogenic according to
ClinVar classification, and 9 has also been found by
our systematic literature review as follow:
NM_001080517:c.1195A>T (p.Lys399%), NM_001
080517:c.1333C>T (p.Argd45*), NM_001080517:
c.3001C>T (p.Argl001*), NM_001080517:¢.2177_
2178del (p.Thr726Asnfs*39), NM_001080517:¢c.377
1dup (p.Ser1258Glufs*65), NM_001080517:c.3856del
(p-Ser1286Leufs*84), NM_001080517:¢c.2302C > T,
p-(Arg768*), NM_001080517:c.2347-7TA > G p.(Arg
783Leufs*2) and NM_001080517:c.3246delT (p.Ala
1083Leufs) (Table 3).

Seven of these variants were found to be patho-
genic with clinical significance. Among them, four
presented frameshift mutations: NM_001080517:c.
1993delC (p.Leul775Terfs), NM_001080517:c.32
66-3267delCT (p.Ser1089Cysfs) and NM_001080
517:¢.3783dupC (p.Phel262Leufs). One of the
SETDS variant was found in the acceptor splice gene
region (NM_001080517:¢c.1783-2A > T), and another
was a 141 nucleotide deletion in total, corresponding
to the elimination of 81 nucleotides of the SETD5
gene, that covers seven codons of exon 7, and 60
nucleotides of the adjacent intron 7 (NM_001080
517:¢.547-567 + 60del). Finally, two variants of
probable pathogenic impact were found: one non-
sense SNV, NM_001080517:¢c.3277A>T (p.Lys10
93Ter), and one frameshift deletion, NM_001080
517:¢.3949delA (p.Thr1317Hisfs).

Within the variants found in ClinVar, we did not
found gender information, and only two were
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associated with some clinical condition: the deletion
NM_001080517:¢.547-567 + 60del was associated
with mental retardation and the SNV NM_0010
80517:¢.1783-2A > T was associated with autosomal
dominant 23 disease.

Large deletions (>100 bp) are also reported that
removed out part or the entire SETDS5 gene. In one
female case, a 54 kb deletion that removed part of the
SETDS5 gene between introns 2 and 19, resulting in
the loss of the first 16 exons of the corresponding
coding region (Parenti et al., 2017). Another type of
large deletion involved a chromosomic region not
restricted to the SETDS gene locus. One female case
reported a deletion of 643 kb (Peltekova et al., 2012),
that depleted the following genes (position chr3:
9,392,274-10,035,209): THUMPD3, SETDS,
LHFPL4, MTMRI4, CPNE9, BRPFI, O0OGGI,
CAMKI, TADA3, ARPC4, TTLL3, CIDEC, JAGNI,
ILI7RE, CRELD, and PRRT3. Another reported
female case presented a deletion of 684 kb (chr3:
9,005,098-9,689,733), that depleted the following
genes: SRGAP3, THUMPD3, SETDS, and LHFPLA4
(Kellogg et al., 2013). In another female case, it was
reported a deletion of 1.6 Mb (chr3: 8,330,426—
9,910,334; Gunnarsson & Bruun, 2010), that depleted
the 16 genes as follow: LMCDI, CAV3, OXTR,
SRGAP3, SETD5, THUMPD3, LHFPL4, MTMRI14,
BRPFI, OGG1, CAMKI, TADA3L, ARPC4, TTLL3,
RPUSD3, and CIDEC.

These reported deletions of 643, 684, and 1.6 Mb,
share a common region with the following four
reported deletions (Kuechler et al., 2015): deletions
of 148 kb (4 genes), 371 kb (10 genes), 2.45 Mb (46
genes), and 11.16 Mb (71 genes). In all these female
cases, the common deleted region is on the chromo-
some 3, between position 9,422,487-9,542,885, com-
posed by the three genes: SETD5, THUMPD3, and
LHFPLA.

Finally, another female case presenting a large
deletion of 1.24 Mb (Riess et al., 2012) containing
seven genes (chr3: 8,275,541-9,516,586), which dif-
fered from the previously described, did not delete
the LHFPL4 gene but the genes SETDS5 and
THUMPD?3 along with the following genes: LMCD],
CAV3, OXTR, RADI8, and SRGAP3.

Recently, a boy with a peculiar-appearing, delayed
psychomotor development and speech and severe
intellectual disability was described (Yagasaki et al.,
2017) with a case of 3p25 distal deletion. The dele-
tion of 10.1 Mb covering the locus 3p26.3p25.3
(chr3:1 —10,142,919) occurs in a region that contains
genes such as CHLI (CALL), CTCL4, LRRNI,
ITPRI, SRGAP3, and SETDS.
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Table 4 Variants LoF in SETDS gene found on EXAC database described in healthy humans

Locus Variant Aminoacid change Mutation type MAF

¢chr3:9,506,250 c.2618C>A p-Ser873Ter stop gained 0.000008280
chr3:9,517,551 c.4107_4110dupGAGT p.Ser1371GlufsTer10 Frameshift 0.000008282
chr3:9,517,551 c.4106dupT p-Ser1370GlufsTer10 Frameshift 0.000008282
chr3:9,517,687 c.4243_4244delCC p.Pro1415ThrfsTer38 Frameshift 0.000058260
chr3:9,517,722 c.4276C>T p.Argl426Ter stop gained 0.000008716

Locus — correspond to genomic location of the mutation based on human reference genome, build Hg19; Variant — indicates the nucleotide
change for the transcript NM_ 001080517; Aminoacid change — indicates the position where an aminoacid was changed within the protein
coded by the transcript NM_ 001080517; Mutation type — indicated the protein translation impact of the reported variant, if stop gained or
frameshift; MAF — indicates the Minimum Allele Frequency for the described mutation.

To investigate whether mutations of SETDS5 gene
could also be affecting the same genomic loci of
SETD5-ASI transcript, we analyzed different genetic
databanks such as EXAC, GeneCards, EMBL and
OMIM, but did not found loss of function mutations.
We also performed a SLR to find an association
between SETDS5-AS1 transcript and ASD, but there
is no research describing such correlation. In our
SLR we report nine large deletions involving SETDS5
gene, that is also occurring in SETD5-AS! transcript
(deletions of 643 kb, 684 kb, 1.6 Mb, 148 kb, 371 kb,
2.45 Mb, 11.16 Mb, 1.24 Mb, and 10.1 Mb; Table 1).
The function of this transcript is still unknown in
human, and functional experiments are required to
correlate malfunctions in the transcript with ASD.

To verify whether the reported SETD5 variants of
this SLR are common in the typical development
individuals (TDI) population, we analyzed the EXAC
(Exome Aggregation Consortium) databank (Lek
et al., 2016) and did not found the same mutations
within the database. Furthermore, we also investi-
gated whether LoF mutations are present on TDI and
found five rare mutations associated with stop gain or
frameshift mutations (Table 4). However, none of
these variants have any functional studies describing
their impact in cellular or molecular level that could
affect cellular phenotype.

In all the reported cases of large deletions
(>100 bp), SETDS5 gene locus was totally or partially
deleted. Both, the deletion and SNV mutations in the
SETDS gene, were found in patients sharing common
clinical symptoms, including developmental delay,
ID and/or behavioral deficiency problems. An inter-
esting observation are the eight terminal deletions
ranging from ~6 to 12 Mb in length (Shuib et al.,
2009). In seven of these deletions the 3p.25.2-pter
and 3p.25.3-pter cytobands were identified in patients
with ID. Interestingly, the eighth deletion found cov-
ered the chromosomal band 3p26.1-pter that did not
delete the SETDS5 gene locus, and the considered
patient did not present clinical evidences of ID,
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supporting the raised evidences here that SETDS
gene play a significant role on the development of
this clinical symptom.

MOLECULAR INTERACTIONS OF SETD5

As reported in a previous section, different mutations
underlying SETDS5 gene are leading to similar pheno-
types. This observation suggests that, at molecular
level, this gene play an important role in development
and maintenance of the control nervous system.
Although still unknown the function of SETDS gene,
current findings suggest that SETDS5-encoded protein
orchestrate gene transcription and expression that
were previously associated with ASD and ID. At
molecular level, this protein contains a SET domain,
which is often found in nuclear proteins that interact
with nuclear chromatin (Jenuwein et al., 1998; Bienz,
2006; Kuechler et al., 2015). This interaction can
change the chromatin structure and organization and
could lead to the modulation of gene expression, pos-
sibly causing ASD-related disorders (Balan et al.,
2014). SETDS is highly expressed in several mouse
and human tissues, including intestine, eye, and cere-
bral cortex in adult mouse tissues (Kuechler et al.,
2015) and, in humans, is highly expressed in the brain
(Nagase et al., 2000).

Current findings suggest the SETDS5-encoded pro-
tein orchestrate gene transcription and expression
that act as essential elements on development and
maintenance of the nervous system, the affected tis-
sue by ASD and ID. Analysis of encoded protein
demonstrates that SETD5 contain a SET domain,
which is often found in nuclear proteins that interact
with chromatin (Jenuwein et al., 1998; Bienz, 2006;
Kuechler et al.,, 2015). The SETDS5 gene size is
around 82Kb and produces a protein with 1,442
amino acid residues. The protein has a predicted
mass of 158 kDa. SETDS is highly expressed in sev-
eral mouse and human tissues, including intestine,



Nucleus

SETDS5 Mutations Underlying Autistic Conditions 513

Figure 4 Molecular interactions of SETD5 with microRNAs, N-CoR and PAF1C complex pro-
teins. The expression of Setd5 in mouse can be regulated through the interaction of miRNAs miR-
126-5p, miR-194, and miR-192 (Poissonnier et al., 2014). The interaction of SETDS5 with the
HDAC-containing complex N-CoR in human, suggests that SETD5 might be necessary for the
recruitment of HDAC proteins. This interaction leads to the depletion of chromatin acetylation
marks as the RNAP II proceeds to the elongation stage and moves towards the downstream region
of transcribed genes. SETD5 interactions with PAF1C and N-CoR complexes are involved in devel-
opment of cell lineages, regulation of chromatin accessibility, maintenance of pluripotency, myo-
cyte, and vascular lineage specification (Osipovich et al., 2016). [Color figure can be viewed at

wileyonlinelibrary.com]

eye, and cerebral cortex in adult mouse tissues
(Kuechler et al., 2015) and, in humans, is highly
expressed in the brain (Nagase et al., 2000).

Current findings on SETDS5 activity postulates that
by interacting with the polymerase-associated factor
1 complex (PAFIC) and the nuclear receptor co-
repressor (N-CoR), SETDS5 may be involved in chro-
matin accessibility during transcription (Kim et al.,
2012; Rincon-Arano et al., 2012; Osipovich et al.,
2016; Yu et al., 2017).

The PAFIC is a multi-functional protein complex
with a diversity of functions, such as communication
with transcriptional activators, recruitment and acti-
vation of histone modification factors and the associ-
ation of transcriptional elongation, cleavage and
polyadenylation factors with RNA polymerase II
(RNAP II; Jaehning, 2010). SETDS5 also interacts
with proteins of the PAF1C protein complex (Fig. 4):
PAF1 (PAF1 Homolog, Pafl/RNA Polymerase II
Complex Component), CTR9 (CTR9 Homolog, Paf1/

RNA Polymerase II Complex Component), LEOI
(LEO1 Homolog, Paf1/RNA Polymerase II Complex
Component), and CDC73 (Cell Division Cycle 73;
Osipovich et al., 2016). In this HEK 293T cell model
experiment, it was also found that SETDS5 interacts
with certain factors of the N-CoR repressor complex
(Yoon et al., 2003; Fig. 4), such as NCOR1 (Nuclear
Receptor Corepressor 1), HDAC3 (Histone Deacety-
lase 3), TBL1X (Transducin Beta Like 1 X-Linked
Receptor 1), and TBL1XR1 (Transducin Beta Like 1
X-Linked Receptor 1; Osipovich et al., 2016). The N-
CoR complex is known to mediate transcriptional
repression by promoting chromatin condensation
(Mottis et al., 2013), and its essential for the develop-
ment of multiple organs such as the nervous system
and the heart (Jepsen et al., 2000; Perissi et al.,
2010). Moreover, near the transcription start site of
genes, SETDS is required by the N-CoR complex
that contain histone deacetylases (HDAC) proteins.
This interaction leads to the depletion of chromatin
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acetylation marks, with the RNAP II moving towards
an elongation stage through the downstream region
of transcribed genes (Osipovich et al., 2016; Fig. 4).

The N-CoR complex has already been associated
with genes known to cause some ASD related condi-
tions, such as MeCP2 (methyl CpG binding protein 2),
implicated in RTT. MeCP2 can interact with DNA and
N-CoR/SMRT co-repressors and the loss of this inter-
action can contribute to aberrant brain function and
RTT phenotypes, such as impairments in mobility,
hindlimb clasp and tremor (Lyst et al., 2014).

SETDS can also interacts with several other mole-
cules, including proteins, RNA and microRNAs. Sev-
eral of these proteins, in which interaction with SETD5
has unknown function, were identified (Table 5). Other
interacting molecules demonstrating cellular/molecular
phenotype were found using mouse models, but none of
them were associated with the brain. In Setd5 knockout
mouse embryonic stem cells (mESCs), genes important
for specifying cellular lineages and for embryonic mor-
phogenesis, gastrulation, pattern specification and
regionalization such as Mix//(Mix Paired-Like Homeo-
box), Mespl (Mesoderm Posterior BHLH Transcription
Factor 1), Fitl (Fms Related Tyrosine Kinase 1), Gsc
(Goosecoid Homeobox), and 7 (T Brachyury Tran-
scription Factor) were upregulated, while pluripotency
genes such as KIf4 (Kruppel Like Factor 4), Nanog
(Nanog Homeobox), and Sox2 (SRY-Box 2) were
downregulated (Osipovich et al., 2016). Together, these
findings suggest that Setd5 might also contribute to the
maintenance of pluripotency in mice. Moreover, in
these same Setd5 knockout mouse cell lines, it was also
found that genes involved in myocyte and vascular line-
age specification, such as Mix// and Mespl, had altered
expression, contributing to abnormalities in cardiovas-
cular phenotypes (Osipovich et al., 2016). Additionally,
it has also been shown that, in mice, the Setd5 interacts
with different micro RNAs (miRNA) such as the fol-
lowing: miR-126-5p, miR-194, and miR-192 (Fig. 4).
The miRNA miR-126-5p is mostly expressed in blood
vessel endothelial cells and participates in the control of
leucocyte trafficking by regulating the expression of the
Setd5 gene (Poissonnier et al., 2014). Although with
unknown significance, Setd5 gene is a target for the
miRNAs miR-194 and miR-192, which are also found
in humans (Morimoto et al., 2017).

SETD5 SYNDROME AS A
CHROMATINOPATHY DISORDER

Chromatinopathies are classified as mutation on
chromatin-associated epigenetic modifiers genes that
leads to the development of neurodevelopmental
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disorders such as ASD. These genes are very known
as the cause for several ASD-related syndromes, such
as MECP2, KMT2A (Lysine Methyltransferase 2A)
that is associated with Wiedemann-Steiner syndrome
and others. The MECP2 gene act as a transcriptional
regulator and controls genomic stability (Nan et al.,
1998). Loss of MECP2 leads to impaired sociability,
motor abnormalities, cognitive defects (Marchetto
et al., 2010; Veeraragavan et al., 2015). When dupli-
cation of MECP2 occurs, it also causes several autis-
tic like symptoms such as severe neurodevelopmental
delay with limited or absent speech, motor dysfunc-
tion and autistic behavior (Nageshappa et al., 2016).
KMT?2A is a transcriptional coactivator gene that enc-
odes multiple proteins with conserved functional
domains, such as SET domain. This domain plays a
role in methylatransferase activity on histone H3
lysine 4 (H3K4), being able to mono- di- or tri-
methylation (Wiersma et al., 2016). Mutations in
KMT2A were identified in individuals with Wiede-
mann—Steiner syndrome, which leads a developmen-
tal disorder including ID, microcephaly, short stature
and autism features (Dunkerton et al., 2015).

SETDS, as well as MECP2 and KMT2A, are epige-
netic readers responsible for the link between DNA
methylation and histone modifications. Mutation on
those genes could have a severe impact on gene acti-
vation, leading to ID and autistic features, some char-
acteristics of chromatinopathies.

CONCLUSION

In summary, all mutations found on SETD5 gene by
our SLR and public databank analysis are associated
with a wide spectrum of ID and ASD-like symptoms,
with a high penetrance in males (disease-causing
mutation). In females, although most of reported
cases also presented high penetrance, we found two
cases of normal female carriers that segregated the
mutation to their corresponding boy children that pre-
sented ID and ASD-like phenotypes, enforcing the
idea of SETD5 mutations as disease-causing in
males.

Most of mutations, when described, are loss of
function deletions representing around 43% of all
identified genetic variations found in this gene. How-
ever, it is still unclear how SETDS5 lead to ASD phe-
notypes in humans. More individuals with mutations
on SETDS will provide a better understanding of the
SETDS role in the development of the nervous sys-
tem and on correlating in both gender the penetrance
level of SETD5 gene mutations with ASD symptoms.
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